

CALCULATED MOVES We look at the
two principles on which robot arms are _
programmed to move: point-to-point and
continuous path movement

BETTER BY FOUR The Commodore
Plus/4 is the natural successor to the
Commodore 64, both in terms of facilities
offered and sales potential

the Sinclair OL:

PSYCHIC ATTACK Psytron is a strategy
game in which you are charged with the
running of a space colony besieged by
attacking alien saucers

WOOLLY JUMPERS Our 1000 series
concentrates on the Atari machines. This
week we develop a program that uses sprites

GREEDY METHOD TO HAMMING
CODE A weekly glossary of terms

PROGRAMMING PROJECTS

ROOM FOR MANOEUVRE We aS
to develop program utilities by discussing a_
variable replace routine for the
Commodore 64, BBC Micro and Spectrum

FREE TRANSFER As the 6809 course =
draws to a close, we introduce the important — ae
concept of position- independent code eee ee

CONTROLLING POWER We begin a new
project in which we build a digital-to-
analogue converter to control analogue
devices from the user port and eventually
produce digitally synthesised sound

14

| “BACK
INDEX A complete index to issues - to 36 COVERS

COVER PHOTOGRAPHY BY IAN McKIN

STEVE CROSS oom

— < om

Having considered methods of robot
movement, and the design of robot ‘arms’
and ‘hands’, we now move on to discuss the
various ways in which a robot arm may be
programmed to carry out seemingly
‘intelligent’ tasks. |

We have already seen how robot arms may be
constructed in such a way as to resemble a human
limb — they have ‘skeletons’ to provide structure,
and ‘muscles’ to provide motive power. But the
arm still needs ‘intelligence’ to carry out tasks.

The idea of an intelligent arm may at first seem
nonsensical. However, the form of intelligence we
are considering here is not the kind of high-level
intelligence possessed by humans, but something
considerably less complex. Let’s consider a simple
human action. You are sitting at a table that is
empty apart from.a small object situated on its left-
hand side. Your task is simply to move this object
from the left to the right of the table top. ‘Iwo

forms of intelligence are involved here. The first
involves the perception of both the table and the
object and the decision to move the object from
one side to another. This involves ‘aware thought’,
and it is tied up with concepts such as ‘intention’
and ‘goal-orientated behaviour’. The intelligence
we need to consider is the much lower-level form
that is needed to move your arm and hand
correctly after you have decided on the task that
needs to be carried out — to move your hand to the
right position and to ensure that your hand grasps
the object and releases it at the correct time.

HUMAN TRAINING
This may seem both easy and obvious — but if
you doubt that this is in fact an intelligent act, just
watch a small child attempting to follow the same
sequence. The infant will often fail to pick up the
object, will move it to an inappropriate position
and will, generally, appear quite uncertain as to
what is required. The child is attempting to acquire
the intelligence necessary to move its arms and

THE HOME COMPUTER ADVANCED COURSE 701

il ee

Two-Joint Geometry
In moving from point to point,
the two-joint robot arm must
rotate about its pivot (angle R),
and it must change the shoulder
(S) and elbow (E) angles. If the
Cartesian co-ordinates of the
Current and destination points

are (X1,Y1,21) and (X2,Y2,Z2)
then the changes are calculated
as follows:

A1=SQR(X1°2+Y1°2+Z1°2)
A2=SQR(X2°2+Y2°2+Z2°2)

Pivot:
R1=ARCTAN(Y1/X1)

~ R2=ARCTAN(Y2/X2)
Change=(R2-R1)

Shoulder:

S1=ARCCOS(Z1/A1)+ARCCOS
((A1*2+U* 2-L*2)/
(2*A1*U))

S2=ARCCOS(Z2/A2)+ARCCOS

((A2*2+U* 2-L*2)/
(2*A2*U))

Change=(S2-S1)

Elbow:
E1=ARCCOS((U* 2+L*2-
A1*2)/(2*U*L))
E2=ARCCOS((U* 2+L*2-A2~2)/

ha ag 8
Change=(E1-E2)

~ where U and Lare the lengths of
_ the upper- and lower-arm _

KEVIN JONES

respectively

hands around in an unfamiliar three-dimensional
world. Once it has learned to do this, such

movements will seem to become automatic,
requiring no conscious thought, and we would
then cease to think of them as needing intelligence.

The robot arm is in the same position as the
human toddler — it has the equipment to perform
tasks, but it must ‘learn’ how to perform these
tasks automatically.

The simplest method is to train the arm to
perform specific tasks merely by leading it through
a sequence of movements and, in effect, telling it
to ‘remember this’. This method is used with a
large number of industrial robots. An operator
literally takes the robot by the hand and leads it
through the steps that it must follow. This has the
big advantage that the person needs to know
nothing about how the robot arm actually works —
all he must know 1s the sequence of actions that the
arm must follow. In turn, the robot does not need
to ‘know’ what it is doing — it simply has to
‘remember’ the actions it must carry out.

TRAINING METHODS
There are two types of ‘training’ used with robot
arms — point-to-point training and continuous
path training. In point-to-point training, the
operator moves the arm to a certain position and
then presses a button to signal to the robot that this
position must be ‘remembered’. The arm is then
moved to the next position and the button pressed
again. This sequence is continued until a whole
sequence of actions has been stored in the robot’s
memory. Once the training session is over, the
robot may be switched into ‘playback’ mode, and
it will then move from point to point in exactly the
way it was ‘taught’. In continuous path training,
the operator simply leads the robot through the

702 THE HOME COMPUTER ADVANCED COURSE

complete sequence, and the robot remembers
each and every position in the sequence. On
playback, the robot will follow the sequence in the
same way as before.

Returning to the example a a person sitting ata —
table and moving an object from one side of it to
another, we can use the point-to-point method to
‘train’ a robot to duplicate this action. This method
is often used with robots that must carry out ‘pick
and place’ tasks — moving an object from one
location to another. By contrast, a robot that is ©
used for spray painting will need to be taught by
the continuous path method to ensure that it
covers the whole object evenly with paint, just as a
person would do.
We now need to consider how the robot

‘remembers’ the sequence of movements that it
should follow. The answer is that the robot uses its
internal sensors to record the position of each of its
joints during the training mode. This is often done
by taking the output from the shaft encoders in the
robot joints and recording the movements made,
either directly into memory or, for more
permanent storage, on tape or disk. When
playback mode is selected, the robot can then
recall all the relevant data and convert it into joint
movement — a relatively complex task.

Surprisingly, it is easier for the robot to
‘remember’ continuous path movement — it has
only to follow the exact route it has been taught.
However, a very large amount of data needs to be
stored — often several thousand positions are
needed to define a continuous path, rather than
the very few positions that are involved in point-
to-point movement. The second difficulty arises
from the fact that, if the arm is to follow the
sequence smoothly and exactly, all of its joints
must be activated simultaneously. A spray-
painting robot may have to make a sweep of the
arm along all three axes, while manoeuvring its
three wrist joints to position the spray correctly.
This means that the computer controlling the
robot must work very fast in order to manipulate
each joint in turn with no appreciable delay;
alternatively, the robot may use as many as six
separate processors, each directing the movement
of one joimt, to achieve truly simultaneous
movement.

CALCULATED MOVE
A point-to-point robot has a harder task because,
although it knows where it should move to, it has
not been ‘told’ how it should get there. It could
simply move each joint until it was at the required —
position, but this would be wasteful of both time
and energy. It would be much better if the robot
could calculate a direct route for its hand from one
point to another; it could then make the required
movement in one sweep, just as a person does. But

the calculations required to do: this are again
complex, as Cartesian co-ordinates must be used
to move the hand in a straight line between two
defined points, while the arm positions themselves
are defined in a different co-ordinate system

| a

i

entirely — typically revolute co-ordinates. So
the robot must be able to solve some tricky
geometrical problems in order to work efficiently.
And, in the case of industrial robots that must

move objects weighing several hundred kilograms
over a large distance, the saving in time and energy
by choosing the best route can be considerable.

_ Another problem facing the point-to-point
robot is the dynamics of the arm itself. Move your
own arm to pick up an object and you will find that
it accelerates slowly away from its original position
until it reaches maximum speed, then decelerates
until it comes to a smooth stop at its final position.
The advantages of a robot arm that does this are

considerable. Many such arms move at a constant

speed, accelerating almost immediately to
maximum velocity and stopping dead at the end of —
the movement sequence. This places strain on the

arm itself and requires more power than an arm

which accelerates and decelerates smoothly. It also
means that the arm may not move as quickly as it
could otherwise do and, if at the end of the

sequence the robot were required to pick up a

delicate object, even a slight displacement of the

object could result in the arm hitting it with

considerable force. So the robot needs to work out

an optimum speed as well as an ideal path to

follow.

ROBOT CHOREOGRAPHY
Even after the arm has been programmed to

follow a precise set of movements, it may turn out

on playback that these movements were not quite

what was required. This may be because of human

error, because the nature of the task has changed

slightly, or because, if the robot is working in

conjunction with other arms, the arms may follow

their own paths and collide with each other.

(Avoiding this latter problem is known as ‘robot

choreography’.) So a method of editing the

sequence is required. This can be achieved by

storing the movements as a linked list, in which

each position is stored and followed by the address

at which the next postion is to be found. In the

initial training session, this address will be the

address of the next position in the list. If the

sequence needs to be edited, the arm could be
moved to the position at which corrections need to

be made, stopped, and a new sequence inserted.

STEVE CROSS

particularly if that object is of an asymmetrical

Another common method of making arms
move intelligently is to use a series of programmed

instructions stored in the computer. Typically,

each robot has its own programming method and

uses a different programming ‘language’ to control

movement, but in general a language is required
that enables the programmer to use Loco-like

commands to specify movement in three

dimensions, with added instructions for wrist and

end effector movement, such as ‘pick up’ or ‘put

down’. as) ore

The problem is similar to training a point-to-

- point robot, and many factors need to be taken

- into consideration. For instance, if a robot arm is

to move forward 10 units then the obvious method

would be to alter the shoulder joint so that the arm

can reach further forward. However, this would

cause the arm to move upwards in an arc, and so

this must be corrected by a downward movement

in the elbow joint. From this it can be seen that the

instruction for just one simple movement must be

translated into two distinct sets of instructions,

working on two separate joints. |

Other problems can arise when the robot is

required to pick up an object. However well the

arm is positioned, it is difficult to ensure that it is in

exactly the right place to pick up the object,

shape. An ‘intelligent’ hand is therefore needed —

this must sense the presence or absence of the

object, the distance of the object from the hand,
and the force exerted by the hand when it tries to

pick the object up. These problems may be tackled

by equipping the hand with a range of proximity,

tactile and force sensors, which provide feedback

that enables the controlling computer to make any

necessary corrections.
If all these problems are considered, we can see

that it is possible to construct a robot arm that

shows a relatively high degree of ‘intelligence’.

However, as yet no arm can be designed to, say,

bowl a cricket ball accurately. This is because the

arm’s intelligence alone is not enough. The robot

must also know the state of the pitch, the position

of the batsman, the wind strength and direction,

and a host of other variable conditions. Then, of

course, it will need to be able to work out the very

complex equations involved in sending a projectile

through the air. For such tasks, much more than

just an intelligent arm is required.

Gently Does It
Picking up an egg is a Searching
test of the robot arm’s sensors
and feedback control
mechanisms. The gripper's
proximity sensor must check
that the egg is close enough to
grasp, then the fingers can start
to close until the touch sensors
indicate contact with the egg.
The output of the touch sensors
must now be checked against
that of the proximity sensor as
the fingers close and the arm
begins to lift. A sudden
decrease in proximity shows
that the egg is slipping, so the ©
fingers must tighten until a
preset grip-force limit is
reached or until sudden
decrease in grip-force shows
that the eggshell is distorting —
prior to cracking

THE HOME COMPUTER ADVANCED COURSE 703

ROOM FOR
MANOEUVRE
Simple utility programs, like the variable
search program we wrote on pages 664 and
700, can be written entirely in BASIC, using
only information about how individual lines
of BASIC are stored. For more complicated
utilities, however, we need greater detail and
therefore imust resort to machine code.

In order to operate our variable search program,
we merged it with the program to be searched.
With this method, the only information from the
operating system that we had to supply was the
address where the BASIc program starts; the end of
the program being searched was found by testing
for the lowest line number in the utility program.

The utility that we are creating is a variable
replace program. This is a very useful program to
have on file. If you had used a variable name
throughout a program only to find it was illegal,
imagine how much time such a program would
save. Similarly, you might have written a program
you wanted someone else to use in which the
variable names were not easy to decipher. Here we
explain the necessary theory for the machine code
and in the next instalment we will publish the
listings.

SPACE IN MEMORY
In this exercise, we need to put the utility program
in a separate section of memory from the program
it is working on. We must also find a different
method of locating the end of the Basic program,
and a means of accommodating two BASIC
programs in the computer at the same time.

The three computers that we are looking at —
the BBC Micro, Commodore 64 and Sinclair
Spectrum — use a set of pointers to tell the
operating system and the sasic interpreter where
to locate BAsic programs and variables, etc. (see
page 56). Unfortunately, the details are different
in the three machines.

On the BBC Micro, there are four important
pointers: PAGE and TOP, which hold the beginning
and end address of the Basic program; LOMEM,
which holds the start address of the Basic
variables; and HIMEM, which holds the end address
of the BAsIc area. These four pointers are stored as
built-in BAsic variables, and we can read or alter

_ their values by simple Basic statements. If we have
a BASIC program in memory and we wish to add
another, we change PAGE to a value higher than
TOP — using the command OLD to reset TOP and

_ LOMEM — and can then add the new program
without affecting the original program. We change
from one program to another eas giving new values ‘

104 THE HOME COMPUTER ADVANCED COURSE —

to both PAGE and HIMEM and using the command
OLD.

Once we have the utility program running, the
values of the pointers refer to the utility program;
to enable the utility to find the start and end of the
program it is to work on, we need to copy the
original values into an area of memory that will not
be altered when we change programs. Another
method of finding the end of a program is to use
the end marker that the Basic interpreter puts in.
This is simply a byte holding a value of 128 or
more, immediately following the carriage return
character at the end of the last line of the program.
This. byte, and the one following, will be
interpreted as the HI and LO bytes of the next line
number. Since the HI byte of this number is 128 or
more, this will give a line number of 32768
(256X128) or more. As the highest valid line
number is 32767, we can be sure that we have
found the end of program marker and not just
another line number.

The Commodore 64 uses seven pointers, stored
in zero page memory, to indicate various parts of
the BASIC program area. TXTTAB, at addresses 43
and 44, points to the start of the BAsic program;
VARTAB, ARYTAB, STREND, FRETOP and FRESPC, at
addresses 45 to 54, point to various sections of
the variable table; and MEMSIZ, at addresses 55
and 56, points to the end of the BASIC area. It is
possible to change these pointers in order to create
a separate area in which to run a BASIC program by
use of the POKE command. However, a short
machine code program is recommended as it is
more direct, and reduces the chances of crashing
the computer with a typing mistake.

In the Commodore 64, the end of a BASIC
program is indicated by two bytes containing zeros
immediately following the zero byte marking the
end of the last line of the program. Following the
chain of pointers at the beginning of each line of
the program until we find a pointer of zero will
indicate the end of the program.

FOR THE SPECTRUM
Creating this utility is rather more complicated on
the Spectrum. Instead of a separate area for the
BASIC program, there is a single, continuous block
of memory that includes not only the Basic

_ program and variables, but also all the workspace
areas used by the operating system and the Basic
interpreter. With this layout of the memory it is
difficult, if not impossible, to have two BASIC
programs in the main working area, so we will

_make a copy of our program above RAMTOP and
work on it there. This still leaves the problem of
recovering the program and fitting it into the main

~ LIZDIXON

program area after it has been altered, and we will |

need a machine code program to do this for us.

The Spectrum manual gives a great deal of

information about the way a BASIC program Is

stored and what the various areas of memory are >

used for. However, because of the large number of —

different sections in the working area, and the way

these areas can move around, it is difficult to write —
utility programs without using machine code
subroutines from the ROM. Ifyou want to do any

UTILITY PROGRAMS/PROGRAMMING PROJECTS |

serious utility programming on the Spectrum, a
valuable reference work is The Complete
Spectrum ROM Disassembly, by Dr Ian Logan
and Dr Frank O’Hara. This explains how all the
ROM routines work,

- Two of the most important subroutines in the
ROM for use in utility programs are the routines
that open up or reclaim space in the working area,
and we will be looking at these when we come to
the variable search and replace program.

ERRATA 7
On page 118 in the BBC and
Commodore BASIC flavours:
@ In line 1150 there are two
successive assignments to
CS(3) — change the second
assignment to

C$(4)="Q
@ Inline Me change Z=1 to

Z=2
@ Line 200 of the BBC
flavours should be

200 CLS
as in the Spectrum version

How BASIC Programs Are Stored
Most micros follow essentially the same storage format in the
BASIC program area. Each program line begins with the line data
— BASIC line number in two-byte form, and some information

.> _. about the length of the line. Program text is stored more or less —

500 REM EXAMPLE unaltered, though BASIC keywords are replaced by one-byte

BBC VERSION code numbers called ‘tokens

BEGG ESeooOosoee
In this format 13 (ASCII for
[RETURN]) is a start-of-line
marker; itis more commonly

Ss aaa eS placed at the end of the line.
a # ne eS Line length has only a single

LINE LINENUMBER LENGTH TOKEN PROGRAM TEXT byte, which confines program
MARKER lines to 255 characters. The

space directly after the line ©

COMMODORE 64 VERSION
number has been stored

LO HI LO HI The Link Address bytes

feel [1-1 [ele [o[o Poe F Gai ew eos
J ee eee —-—--t: ofthe first byte of the next

— Ta.‘ ee, |

LINK ADDRESS LINE NUMBER TOKEN PROGRAM TEXT une Programtextarea Startsat =)
MARKER address 2049, and thisline is —

1/7 bytes long, so the start

address of the next line is

SPECTRUM VERSION
2066

HI LO LO | HI ry fs Spectrum methods are always |

PET TT Ee TTD Te] Le) Samia
ies oaern ae occupies two bytes, so a

_ single program line could be

: oT , a END 65,536 characters long! The
LINE NUMBER LINE LENGTH TOKEN PROGRAM Tex | oe line length here is 13 — the

bytes in the line including the

end-of-line byte, but not
counting the line data bytes

_ THE HOME COMPUTER ADVANCED COURSE 705

WOOLLY JUMPERS
o ee ae “ aN OE rere aE: es ayes |

handling facilities of Atari Loco. These are
exceptionally good, and include commands
to define your own sprites and determine
their speed. There are a multitude of colours
to choose from, and a novel facility for
detecting events — like collisions — and —
taking e evasive action.

Atari LOGO ohas four sprites, which are e numbered 0
to 3, with 0 as the ‘default’ turtle. The Atari
manual refers to them as turtles rather than sprites,
so we'll call them turtles too.

TELL 1 makes turtle 1 current; in other words,
turtle 1 will obey any commands you give. ue

TELL 1
FD 40
RT 90
TELL 2
BK 40
RT 90
TELL 3 —
RT 90

You can, however, have more than one current
turtle. Try:

TELL {1 2.3]
FD 50

Now those three turtles will obey the commands.
All four turtles have the rotating turtle shape,

shape 0, until another shape is defined. Up to 15
other shapes can be defined, using the editor,
and then assigned to the turtles. These user-
defined shapes do not rotate as the turtle turns.

Typing EDSH 1 will set the editor ready to edit
shape 1. You can move around the screen by using
the cursor keys. Pressing the Space bar will switch
an empty box to full or a full box to empty. Once
you have designed a shape, you define it by
pressing <ESC>.The command SETSH 1 will give
turtles 1, 2 and 3 (the current turtles) the new
shape.

ASK enables you to send a command to a
particular turtle without changing the current
turtles. ‘Try:

ASK 1[FD 20]

and you will see that only turtle 1 moves. Now type

FD 20 and all three turtles will move because the
current turtles are still numbers 1, 2 and 3.

Turtles can be given a speed, as well as the
heading and a position. SETSP 30 gives the current
turtle a speed of 30 in its present direction. The
turtles will keep their speeds until you change
them. You can xun procedures, or create drawings
on the screen, and the speeds are unaffected. To
stop the turtles, you give them a speed of 0.
Entering the editor will stop them as well, since
entering the editor will always destroy the graphics
display because they share the same area of
memory.

On the Atari you have 128 different colout
shades to choose from. You can set the colour of
the background, the pen colour and the colour of
the turtle. For example, SETBG 92 will set the
background green. SETPC 0 23 will set the pen
colour to orange. The 23 is the code for orange,
and 0 is the pen number. In Atari Loco, the turtle
has a choice of three pens with which to write,
although we shall use only pen 0 (the default pen)
in this article. SETC 7 will set the current turtle
white. There is a table of colours and
corresponding colour codes on page 26 of the
Atari reference manual.

DEMONS
The most original aspect of Atari LOGO is its use of
demons. There are 21 collisions and special events
(see page 145 of the Atari reference manual) that
LOGO can detect. Most of these are collisions
between turtles, or turtles and lines. A demon tells _
LOGO what to do when one of these collisions
occurs. For example, collision number 0 is when
turtle number 0 crosses a line drawn with pen
number 0. To set up a demon we use the command
WHEN. Try this:

with the turtle facing it. Now set up a WHEN pido

with the following command:

WHEN 0 [BK:50]

Nothing happens immediately, but the WHEN

demon is now present inside the. computer
keeping a watch out for event 0. Now try SETSP 30.
The turtle sets off towards the line, but when it
reaches it the WHEN demon is triggered and the
turtle is thrown back. The turtle keeps on going.

_with a speed of 30, but-every time it comes to the
line the WHEN demon repulses it.

_ This WHEN demon will stay in operation until
you clear it by typing WHEN 0[]. All demons will be
removed if you type CS, if there is an error
message, or if you use the editor. |

It is a nuisance to have to remember all the
codes for the various collisions, so there are two
primitives to help you: OVER <turtlenumber>
<pennumber> outputs the number for the
collision between that turtle and a line drawn in
that pen, and TOUCHING <curtlenumber 1>
<turtlenumber 2> outputs the number of the
demon for a collision between those two turtles.

CAGING TURTLE ,
Here is a set of procedures to cage a turtle within a
box. Whenever the turtle hits the edge of the box
(WHEN OVER 0 0) a demon calls up the procedure
TURN. This causes the turtle to retreat 10 units, and
then make a random turn. (RANDOM, together ‘with
anumber, N, outputs a random number between 0
and N—1 inclusive).

TO TRAP
DRAW. TRAP
HOME
WHEN OVER 0 0 [TURN]
SETSP 50

END

TO DRAW. TRAP
CS
PU
SETPOS [-50 -50]

TO SQUARE
REPEAT 4 [FD 100 RT 90]

END
TO TURN

BK 10
RT RANDOM 45

END
Demons can also be used for watching the

jovstioks Of the 21 speed events that we have
mentioned, event 3 occurs when the joystick
button is pressed, and event 15 occurs when the
joystick position is changed. The command JOY 1
outputs a number from -1 to 7 corresponding to
the position of the joystick (in port 2). Define JOYH
in this way:

10 JOYH
IF(JOY1) <0 [STOP]
ASK 0 [SETH 45 * own

END —

then set the turtle in motion with SETSP 50, and

finally set up a WHEN demon:

WHEN 15 [JOYH] |

The joysticks can now be used to control the
heading of turtle 0.
You can give more than one WHEN command at

the same time, but they are not actually active
simultaneously. While one demon is busy (i.e.
when its event occurs) the others are inactive. This
can mean that some collisions go undetected.

The way to deal with this problem is to have
‘each demon simply set the speeds to zero and to
run a continuous procedure that watches for this
happening. Adapting our previous program to use

this technique:

TO TRAP
DRAW. TRAP
HOME ,
WHEN OVER 00 [SETSP 0]
SETSP 50 |
WATCH

END

TO WATCH |
IF SPEED = 0 [CHECK]
WATCH

END

In this procedure SPEED outputs the value of the
speed of the current turtle. The procedure CHECK
must determine which event has occurred, carry
out the necessary actions and then restore the
speeds. In this case there is only one event we are
interested in, but it illustrates the way to program
the method. |

TO CHECK |
~ IF COND OVER 0 0 THEN [TURN]
SETSP 50

~ END |

The command COND and a number gives a true
output if an event of that number has occurred.
COND can only check an event at the time Loco
executes the line containing it.

, | ar a
Shane ©

LIZ DIXON

IAN McKINNELL

Canis Familiaris — The Dog

tH

ee FA an

‘Game Start

The Middie Game

Back In The Pen Again!

Ovis Aries — The Sheep

ROUNDING UP SHEEP
We give a game that uses many of the features

we've described. The player uses the joystick to
control a dog that is chasing two sheep in a field. If
the sheep run into the fence they will back off and
turn. If the sheep run into one another they will
turn at random. If the dog touches the sheep they
turn 90° to the right. Pressing the joystick button
causes a little cage to be drawn in the bottom left-
hand corner of the field. Pressing the button again
will erase the cage. The dog’s task is to manoeuvre
the sheep into the ss

TO CHASE
SET.VAR
ASK :TURTLE [SET.SCREEN] .
SET.DEMONS

START
WATCH

_ END

TO SET.VAR
MAKE “FENCE 0
MAKE “TURTLE 0
MAKE “SHEEP1 3
MAKE “SHEEP2 2
MAKE “DOG 1
MAKE “GREEN 92
MAKE “ORANGE 23
MAKE “BLACK 0
MAKE “WHITE 7

END

10 SEI. SCREEN ©
CS |
FS
SETBG ‘GREEN
HT
PU
SETPOS [-150 30]
PD
SETPC 0 :BROWN
RECT 160 300 | py ;

END

TO RECT :SIDE1 :SIDE2
REPEAT 2 [FD :SIDE1 RT 90 FD :SIDE2 RT g0]

END

TO SET.DEMONS
WHEN OVER :SHEEP1 :FENCE ISETSP 0]
WHEN OVER :SHEEP2 :FENCE [SETSP 0]
WHEN TOUCHING :SHEEP1 :SHEEP2 [SETSP 0]
WHEN TOUCHING :DOG :SHEEP1 [SETSP 0]
WHEN TOUCHING :DOG :SHEEP2 [SETSP 0]
WHEN 3 [SETSP 0]
WHEN 15 [JOYH]

END

TO JOYH
iF (JOY 1) < 0[SICP]
ASK :DOG [SETH 45 * JOY 7

END

TO START
SET ‘SHEEP 1 [-150 20] 45 -WHITE

708 THE HOME COMPUTER ADVANCED COURSE

SET :SHEEP2 1 [150 20] 315 :WHITE
SET :DOG 2 [0 0] 0 :BLACK
SET.SPEEDS

END

TO SET :NO :SHAPE :POS :HEAD :COLOR
TELL :NO
PU
SETSH :SHAPE
SETC :COLOR ST

DETPOS POS | : ,
SEIH (HEAD F

END :

TO SEI.SPEEDS
ASK :SHEEP1 [SETSP 10] -

ASK :SHEEP2 [SETSP 10]
ASK :DOG [SETSP 60]

END

TO WAICH
IF SPEED = 0 [CHECK]
WATCH

END

TO CHECK
IF COND OVER :SHEEP1 :FENCE ASK: SHEEP 1
[BK 20 RT 90]]
IF COND OVER :SHEEP2 :FENCE [ASK :SHEEP2
[BK 20 RT 90]] |
IF COND TOUCHING :SHEEP1 :SHEEP2 [BUMP]
IF COND TOUCHING :DOG :SHEEP1 [ASK
SHEEP1 [RT 90]|
IF COND TOUCHING :DOG SHEEP? [ASK
OHEEPZ (RI 90])
IF COND 3 [ASK : TURTLE [DRAW.CAGE]]
SET.SPEEDS

END

TO BUMP
ASK :SHEEP1 [SETH RANDOM 360]
ASK :SHEEP2 [SETH RANDOM 360]

END
TO DRAW.CAGE
PU
SETPOS [-150 -30]
PX
SETH 90
REPEAT 2 (f 50 RT 90] L

G
s

The Commodore 64 is one of the world’s top
selling computers, so it might seem that the
company would be hard put to improve on
it. However, Commodore’s latest home
computer, the Plus/4, represents an
improvement in several ways. It has a better
version of BASIC, four built-in applications
programs, and a full 64 Kbytes of memory.

Commodore claims that the Commodore Plus/4
is intended to sell alongside the Commodore 64
and not to replace it. But the new model offers so
many improvements on the 64 that if it succeeds in
the marketplace, it could well supersede its
predecessor entirely.

The Plus/4 uses the 7501 microprocessor,
which is a development of the 6502. This chip is
designed in such a way that it can access more than
64 Kbytes of memory. This means that the
machine has room for a decent Basic, while
keeping its RAM free for the user. There are 64
Kbytes free to be used by BAsIC programs,
although this falls to 50 Kbytes when graphics are
used. This is better than every other home micro,
except for the Sinclair OL (see page 501), and the
Advance 86a (see page 349).
An excellent version of Microsoft Basic has
been implemented on the Plus/4, and the graphics
and sound commands are particularly worth
noting. In graphics mode, the DRAW command will
produce dots or lines and any outline shape can be
filled with colour by the PAINT command. The BOX
command will draw squares and rectangles in
outline or in solid colour. The CIRCLE command is
particularly versatile. As well as drawing circles,
ovals can be created by specifying the height and
width of the oval. Parts of ovals may be drawn to
produce arcs, simply by specifying start and stop
positions in the command.

All commands normally operate on a screen
with a resolution of 320 by 200 dots. This is the
same resolution as the Commodore 64, but the

- Plus/4 really excels in its choice of colours. It can
show 120 different colours, plus black, on the
screen at the same time. These are created from 15

- basic shades, each of which can be displayed in
eight different brightnesses. Unfortunately, the
Plus/4 cannot produce sprites.

The commands to control sound are fairly
standard. The SOUND command plays a note of
specified pitch and duration. A _ separate
command, VOL, specifies one of eight settings for
the volume of each sound channel. All sound is
output through the television loudspeaker. Only
two sound channels are provided on the Plus/4,

although the Basic allows three channels to be
specified. This ‘third’ channel is, in fact, a noise
facility and any note given that channel reference
will be reproduced as noise. This is very useful for
games, when special sound effects are required.
A number of commands have been included to

improve the main body of the Basic language. An
AUTO command will produce line numbers
automatically when programs are keyed in;
RENUMBER will give new line numbers to
programs; and VERIFY will check that programs
have been successfully saved on cassette or disk.
There are many new commands for working with
disks, and Commodore evidently hopes to sell
disk drives to a high percentage of Plus/4 owners.

The Plus/4 has a text display of 40 by 25
characters. The user can specify two points on the
screen to act as the corners of a ‘window’. All text,
such as listings and commands, will then appear
within that window area only, leaving the rest of
the screen untouched.
The keys on the Plus/4 are very sensitive to

touch, needing only the slightest pressure for them
to register. A number of characters such as @, =,
+,—, and £ are given their own keys and a full set
of graphics characters can be produced from the
keyboard. At the top of the keyboard are four
function keys, and when the machine is turned on,
they are automatically set up to produce the most
commonly-used commands. The function keys

Meet The Future?
Commodore's long-awaited
successor to the Commodore 64
has all the features that are
becoming standard in the latest
micros: MSX-style looks and
cursor Cluster, big memory and
on-board software. The sales
competition, however, is
intense, and potential
customers are more informed
than ever. Commodore is not
taking jts market dominance for
granted, as the Plus/4’s looks
and features plainly show

THE HOME COMPUTER ADVANCED COURSE 709

CHRIS STEVENS

| HARDWARE/COMMODORE PLUS /4
t

QL Vs Plus/4
_ Objectively, there is no comparison: the QL with ifs built-in

Microdrives, bigger memory, Supersasic and superb software is,
by market standards, a snip at £400, the Plus/4 with cassette
recorder for about £350 scores only on the quality of ifs
keyboard. A cool appraisal would indicate the QL without
hesitation, and yet most of us will finally decide entirely on feel
and brand loyalty. Without doubt the Plus/4 will sell and sell!

enable the user to define a new command of up to:
128 characters for each key.. Eight different

~ functions can be produced from the four keys by
using them with the Shift key. |

The generous amount of memory space allows
the Plus/4 to have built-in applications software.
Four programs are provided: a word processor,

spreadsheet, database and graphics. package.
These programs are designed to work together.

Unfortunately, the word processor is rather
difficult to use. The Plus/4 can display only 40
characters across its screen width, but many
printers can produce 80 characters. ‘To match this
width, the screen pans sideways once the 37th
column is reached and continues panning until the
77th column, when it jumps back to the first
column. The program has formatting commands
to set margins and justify text, but these come into
effect only when the text is printed out. It also has
SEARCH and REPLACE commands to locate
particular words or phrases within a document
and replace them if necessary. A limit of 99 lines is
set on the amount of text that may be entered. The
77-character line width means that this is a
maximum of 1,500 words, which is not sufficient
for serious applications. |

The spreadsheet program is easier to use than
the word processor, although it also suffers from
the limitations of a 40-column screen display. This
means that it can show only three spreadsheet cells
across the width of the screen and 12 down, even
though it can handle models up to 17 cells wide
and 50 deep. 7 ;

The graphics program is rather disappointing.
All it does is transform a set of figures from the
spreadsheet into a kind of crude bar graph, made
up from block graphics, and transfer it to the word
processor. There it can be displayed or printed.

Both the word processor and spreadsheet can

be used with the standard machine, but the only

way to save their results is with a disk drive. This

710 THE HOME COMPUTER ADVANCED COURSE

The computer's dedicated

IAN McKINNELL

. Generally, the software is disappointing, being too

Serial Bus
Standard Commodore
peripherals such as a disk drive
and printer can plug in here

Cassette Socket

cassette recorder plugs in here

User Port

Joystick Sockets |
These two sockets take the

Plus/ 4’s dedicated joysticks. -
Standard joysticks cannot be
used |

Video And Sound Output Socket

Tv Modulator
This gives a signal for an
ordinary television set

ULA Case
A large ULA (uncommitted logic
array) chip is contained inside
this metal case, which protects
against radio interference

ROMs
The ROMs contain the BASIC
and the four software packages

means they are of little use to people who rely on
cassette storage. The last program, the database,
cannot be used at all without a disk drive. It works
by defining a standard format that is recorded onto
disk as empty records. All data is then entered into
the empty records. This means that one disk can be
used for one database only and the format of the
data cannot be changed once data has been
recorded. Each database can hold up to 999
records, each with up to 17 fields of 38 characters.

crude for serious business use, and requiring the
home user to buy a disk drive.

Many home users will be far more pleased with
the built-in machine code monitor, Tedmon, than
with the software. The monitor is a great help to
the machine code programmer and is called into
use by the command MONITOR.

Commodore is producing a number of add-ons
for the Plus/4. The most important of these for
many users will be the cassette recorder. Like
other Commodore micros, the Plus/4 needs a
cassette recorder made specially by Commodore.

COMMODORE PLUS/4/HARDWARE

Function Keys

Each of these can be
programmed with two
commands of up to 128
characters

Function Keys

Cursor Keys

_ Cursor Cluster

Power Socket

On/Off Switch

Reset Button

7501 CPU Reset Button

64K RAM

Expansion Port | User Port

Expansion Port New Features ... |
This is used by cartridge Old Commodore hands will be interested to [earn inal (ne Pius/4

software and by a ‘fast’ disk has both Escape and Resei keys. Other encouraging signs are ihe
drive cursor keys cluster, the function keys (programmable from sasic),

and the Help key. [he power supply, cassetie and joystick sockels
are all different from the Commodore 64 and Vic-20 Standard, as
ate ie expansion alc user pois

CHRIS STEVENS

s It uses a different cassette plug to the older
Hidden Cost : Commodores so a different recorder has to be

oo oe : bought. The price is the same, though — £45. The

processor, coreadeheet Plus/4 also uses a different socket for joysticks.

database and graphics utility. A. slightly updated version of the slow
The packages chief strengths Commodore disk drive is being offered for the

are tie (act Wat ney ale machine. Commodore is also developing a ‘fast’
Uae es 4 disk disk drive that will plug into the machine's

drive, which effectively cartridge port to give speeds closer to normal disk

increases the cost of the drives. No less than five Commodore printers will
machine by £200 work with the micro: a daisy wheel, two ordinary

dot matrix printers, a colour dot matrix printer
and a four-pen printer/plotter. |

The Commodore Plus/4 is selling for
approximately £70 more than the Commodore
64, but its improved BAsic and extra memory
space make it a good buy. In a future article we
shall be looking in detail at how this new version of
Commodore basic works. Lack of software will
remain a problem until the machine has
established itself on the market. But a company
with Commodore’s record of sales should have
little trouble gaining software support. IAN McKINNELL

THE HOME COMPUTER ADVANCED COURSE 711

SEND IN THE CLONES

a preliminary look at Vu-Calc, a simple
spreadsheet modelling package for the
Sinclair Spectrum and BBC Micro. Here we
discuss how to use Vu-Calc’s features to.

carry out calculations
repayments or bank loans.

of mortgage

The. great strength : of Eenhecs an Sao atans em
even a simple tales like Psion’s Vu-Calc — is
the way in which they allow complex formulae to
be applied to data. As we shall see, it is possible to
build up some interesting and useful models with
Vu-Calc, despite the fact that this particular
program supplies almost nothing in the way of
built-in formulae. In fact, Vu-Calc’s sole built-in
formula is its ability to ‘sum’ (i.e. add together the

contents of) blocks of cells; this is indicated by
_ prefixing the cell address with an @ sign.

More advanced spreadsheets contain very
elaborate built-in formulae, which the user can call
up by name. The advantage of such a system is that
you don’t actually have to know the mechanics of
how these formulae work. If you want to use a
mortgage formula with Multiplan, for example,
to calculate expected repayments on a house
purchase over different repayment periods — say
15, 20 and 25 years — you simply call up the
formula and enter the relevant data. Multiplan —
then works out all the answers.

With Vu-Calc, the same calculations take
considerably more time and effort. You must

~ construct the required formulae yourself, and then
key them into the machine. Vu-Calc also imposes

-a number of constraints on the user. It has a
- maximum of 28 columns, so the largest model you

can build, with each column representing one
month, will cover a period of just over two years.
Accuracy can also be a problem — Vu-Calc works
with integer (whole number) values only, and
simply ignores the figures after a decimal point, so
99.9 would be considered as 99. Vu-Calc does
allow values and arithmetical operations to be
entered at any point on the model. For example, if
the cursor is located at a blank cell (H5, for
example), you can enter 500*2 in the command
line. Pressing the Enter key will Gisplay the
result — 1,000 — in cell H5.

Another irritating Vu-Calc feature is the way in
which formulae are edited. A ‘smart’ package such
as Lotus 1-2-3 uses a function key for editing.
Pressing the key automatically puts the contents of
the cell containing the cursor into the command
line. Vu-Calc has an EDIT command (#E) that is
used if a formula needs to be changed, but the

712 THE HOME COMPUTER ADVANCED COURSE

formula must be retyped each time the edit facility
is used. If you are working on a long formula and
realise that you have forgotten to enter a bracket,
there is no way of simply inserting it — instead the
entire line must be retyped. All the EDIT command
does is to tell the program to erase the old formula
from a cell and then insert the new one.

However, using the REPLICATE command (#R)
with a formuia allows some fairly complex
modelling to be done. Let’s suppose that you want
to extend the household budget example (see page
692) to anticipate inflationary increases in the
household grocery budget, assuming a steady
inflation rate of 0.5 per cent per month.
Performing the necessary calculations with pencil
and paper would clearly be a time-consuming
task. With Vu-Calc it can be done quickly by using
a formula and the REPLICATE command.

To carry out the desired operation, you must tell
Vu-Calc to ‘grow’ your initial monthly budget (say
£200) by 0.5 per cent. More sophisticated
spreadsheets make this easy by using a GROW BY
command, but Vu-Calc requires that the user
enters the arithmetical operations that must be
carried out. In order for Vu-Calc to recognise a
formula that contains cell addresses, the formula
must be prefixed with either $ or %. These are two
arbitrarily chosen symbols that have nothing to do
with dollars or percentages, but tell the program
that cell addresses are significant in the formula
under consideration, and these addresses are
either relative (%) or absolute ($). An absolute cell
reference tells Vu-Calc to look for and act on the
value in a specific cell, regardless of that cell’s
position.

To see what a ‘relative address’ does, let us
return to our example. The formula for “growing”
the budget by 0.5 per cent is %B3* 100.5/100, where
% indicates a relative cell address and B3 is the
address of the cell containing the value
representing the monthly, food budget. Having
keyed this formula into cell B4, we then need to
copy the formula to get the result for the full year.
B4 will display the numeric result of the formula —
the formula itself appears at the bottom of the
worksheet when the cursor is at B4. ‘The REPLICATE
command #R,B4,B5:B14 gives us the desired result
(B4 contains the formula, B5:B14 defines the range
of cells across which replication occurs). The
results are shown almost instantly, and our
spreadsheet model will look like this:

mn eee A EIR LIES OLE TTR

ebeionnbiniethoneneetian iteeaseeneaneninnmrmnnsie:

ser eee i CE SE CEPR SSE SSS Ee Se eegecnet Maa cave eT eee OR LN RR EN IS
sii

The display shows why cell B3 is used to hold the
initial monthly budget amount — the label
extends across columns one and two, so we start at

column three in order to create a neat display. Note
that all the figures are integer values — March’s
figure should read 202.005, but the spreadsheet
‘rounds down, so this is displayed as 202 exactly.

April’s figure would really be 203.01502, but Vu-
Calc would take it to be 203. As the inflationary
increase grows larger month by month, so the
discrepancy between the actual value and the
figure displayed will also become greater.

This simple example demonstrates the effect of
the REPLICATE command when used with relative
cell addresses. Each time the program writes the
formula into the next cell to the right, the formula
changes accordingly. Our original formula in B4
was %B3*100.5/100. This formula replicates to BS
as %B4*100.5/100, to B6 as %B5*100.5/100, and so
on. In each case the column number of the cell
address is increased by one. Replicating down a
column has the same effect on addresses (i.e. E1
becomes Fi, etc.). If we had used absolute
addresses ($) instead of relative addresses, this
‘shift’ in cell addresses would not have happened;
instead the same formula would have been
replicated across all the cells, and the value in each
would be identical to the value shown in B4.

COST ANALYSIS
Now let’s try using the same model to forecast a
company’s monthly expenditure on raw materials,
starting at £100,000 per month and increasing by
0.5 per cent per month over two years. How much
more would the goods cost if bought halfway
through the second year? Using the model we have
just built, this can be calculated very quickly.

Change the value in B3 to 100,000 by moving
roasts nn mrenass reece cnet scenneenstcemcer a

ie we ri rH ane Ptrerttrttteh Aas cneRGdneme come
J we! 08 tak fa he:

ik a kb

a

eB
i 08 a: a
we a | rig

hod
hed A 1 es aaa:
ahngs 2 ata:

cseueseses

‘ at:
ae:

ee

GE
a tO i 00 0 i a a ae
RB eVeReeWeEse

iy a
e

b 7

a git

°, AERke Caw eR

che

som =i

eerie He
LS cent Fall l Ldubebebotedolodbolachobobscoohodbelerhodshedrabary

f 08M ti OY a Wat ae: lO
eaaew 3 emae

onasenes ry a ad be 08
SEER LLL OL Sh hokhd debetachebotetudet- dob}
5 Be A fa wh Ok to I

S epdicchndecheoctiaepaend adbentrate age}

aS in tel Hk ox

ent tee : LIZ DIXON

a 9:
1 deathetrodoct
ab iD itt fa i fal

cre ye re ett it tt

= a8

the cursor to B3 and typing in the new figure. Now
use the REPLICATE command to extend the formula
from.B14 to B26 to make up the full 24 months.
More sophisticated spreadsheets will show the
new results the moment you change the value in
B3. With Vu-Calc though, you must recalculate the
results (which at the moment are still based on the
old formula) by using the CALCULATE command,
#C. Vu-Calc then calculates the new values and
displays the answer we require in cell B20. If you try
this example, you will find that the amount is
£109,931 — an increase of nearly £10,000. This is
not a precise figure, as all numbers are rounded
down, but it is close enough to give you an idea of
the effect of inflation over this period.

As a final example of the single-row type of
problem, let's take a more complex formula,
designed to work out the reducing balance of a
£1,000 credit card debt or bank loan, on which
interest is being paid at 27 per cent per annum.
Assuming that you are paying back £80 per
month, when can you expect to finish paying? The
information needed to calculate this is the
principal of the loan, plus the interest for the
month, less the monthly repayment. So if we key in
1,000 in B1, the formula will be %B1+%B1*.27/12-
80. Replicate the formula across all 28 columns in
the model, scan the row to find the point at which
the amount becomes positive, and you will have
found the point at which the balance is paid off and
you would be in credit if monthly payments
continued. According to our model, this would
take 16 months. As an added bonus, you also have
a. neat display of your outstanding balance each
month, assuming you Keep up the £80 payments.

In the next instalment, we will look at modelling
on Abacus, the spreadsheet program offered with

jaonw
ECE ERECEE EES hee

Rp tetchcbelobetobabdld hdd
Piclolrbeh biviviulginhebebabeptopddiaiahdt

‘THE HOME COMPUTER ADVANCED COURSE 713

~ CONTROLLING

Extract The Digit
The digital-to-analogue
converter shown here features
an excessively large
potentiometer stalk. This is
unnecessary, and should be
trimmed to accommodate a
control knob. Readers may well
appreciate that in shopping for

— electronic components you

IAN McKINNELL

must often take what you can
get and make it fit

~ POWER
In this instalment of Workshop we look at
the construction of a digital-to-analogue
converter to add onto our user port system.
The addition of this simple device will
enable us to control analogue devices from
the user port and produce digitally
synthesised sound.

For this: proj ect we have opted tousea ‘ready-made
digital-to-analogue converter on a chip, although
it is possible to build a circuit from discrete
components. This reduces a complicated process
to a relatively simple circuit.

The analogue output from this chip, the DAC
chip, is buffered with an amplifier on a second
chip. The output from this is fed directly to one
output and through a capacitor and level control
to the other output.
Step One: Cut the case to accommodate the two
system bus connections. An outlet socket may also
be cut for use in future projects.
Step Two: Cut the veroboard to size (30 holes by
16 strips). Now make the track cuts as shown in the ~
diagram. Solder the chip sockets in place first, then
the wire links. The two capacitors should be put in
position next. It does not matter which way
around they are fitted. If you wish to fit the bus
extension socket, then solder this in place now and
fit the ribbon cable.
Step Three: Fit the four sockets into the case, with
the potentiometer. Make the connections
between these with the tinned wire. Finally, make
the three flying leads to the circuit board.
Step Four: Plug in the two chips and the converter
is complete. Note that the two chips do not plug in
the same way around: the D/A converter chip
should be positioned so that the notch is to the left
when viewed from above, with the male bus
connector uppermost; the amplifier chip’s notch
should go to the right.

Once you have built the digital-to-analogue
converter and carefully checked all the
connections, you can test the unit. The D/A
converter will convert any eight-bit binary value
placed in the user port data register into a voltage.
This voltage is output from the unit in two ways. At
the DC (direct current) output socket pair, a DC

? voltage in the range 0 to +2.5v is obtainable,
corresponding to digital user port values from 0 to

| 255. The other output pair is to enable us to
simulate an AC (alternating current) output. The
overall voltage level is controlled by a
potentiometer and can be adjusted to suit the
required input to another piece of apparatus.

In order to test the unit, we can bese a simple

714 THE HOME COMPUTER ADVANCED COURSE

experiment to alter the brightness of an LED. To —
do this the following steps should be carried out:
Step One: An LED, of the type used in the original
buffer box, (see page 5 23), should be connected in
series to a 50-ohm resistor.
Step Two: The D/A converter unit should be
connected directly to the buffer box, which in turn
should be connected to the user port and have
power supplied to it in the usual way.
Step Three: The LED and resistor circuit should be
connected across the DC output sockets on the D/ |
A converter box and this program run:

1@ REM *#*#e* CBRMG4 D-TO-A PROGRAM ###*

oh Pena eae DATREG=3447 7

TES?

4@ Ps OKE “DDR, Biba vet 4 ES it © Nis |

ond) PORE DATREG, VL

60° FR EANT VE

7@ GET At

Sa IFAC RUZ" AND ALE" X" THEN 7@

9@ TF A=" KX" THEN DV=1]

1@@ IF As="Z2" THEN DV=—1

11@ VlLeEVL+DY

te Tr VU 206 AnD VL oe > PHEN soi

1O REM *&##2# BEC D-TO-A TEST FROGRAM x«#*

2@ DDOR=2FEG2: s DATREG=2FE6u

2a valueele?

2@. PDDR=255: REM ALL GQUTPUT

4@ REPEAT

ES PDATREG=value

f7 FRINTvalue

6@ AF=GETE

62 JTF Ake" Z" AND ASS >"K" THEN 62

65 IFA#="X" THEN dv=1 ELSE dv=-1

&? value=valuetdv

7Q UNTIL ivalues255 OR value =@)

This simple program dedicates all eight user port
lines to output by placing 255 (i.e. 11111111) in the
data direction register. An initial value of 127 is
then placed in the user port data register. By
pressing the Z or X keys, the value in the data
register is either decremented or incremented
correspondingly. The program is terminated when
the value in the data register falls outside the range
0 to 255.

By increasing the digital value present in the
data register we can produce increasing analogue
voltages supplying the LED. As the voltage
increases to an acceptable level, the LED will start
to glow, dimly at first, and then more brightly as
the voltage is further increased, until maximum
brightness is achieved when the value 255 is
present in the user port data register.

If your LED fails to light, try reversing the
connections to the D/A converter box, before
checking any further for possible faults. Unlike a
normal bulb, which lights no matter which
direction the current flows in, an LED will only
light when the current is flowing in one particular
direction.

nnn ne LUE UIE

Full Circuit : ? As usual in this sort of
z construction you must be

~ scrupulously careful about the
layout details, especially the
location and cleanliness of the
track breaks. Check your work
regularly with the multimeter,
insert passive components

7 and wire links first, use solder
OUTPUT 1 and the soldering iron

sparingly, and pay particular
® attention to positioning the chips

USER
PORT

x

POTENTIOMETER “@
OUTPUT 2

|-@®

RIBBON CABLE

WIRE LINKS

NOTCH

2N425 DAC
220 nF CAPACITOR CA3140

0.47 uF

~ WIRE LINK CAPACITOR

MINICON

POTENTIOMETER e S

MINICON SOCKET

WIRE LINK

TRACK BREAK | TRACK BREAK

KEVIN JONES

THE HOME COMPUTER ADVANCED COURSE 715

Computer Crime
Massachusetts Institute Of
Technology engineering
students are reputed to hack
into a Boston office block’s
control systems every year so
that the lighted windows flash a
giant message for an hour —
but not all of it is so innocent:

hackers allegedly caused the
Pepsi-Cola Corporation's

— dispatching computer to divert.
shipments of Pepsi as a means
of moving large sums of money
into illicit accounts. Computer
crime, especially using hacking
methods, is reputedly growing
at a faster rate than the
computer industry itself

GREEDY METHOD
Program algorithms can be written with either ; a

TAN McKINNELL

- operating: systems,

_ people's installations soe.

strategical or a tactical approach. They may
sometimes accept short-term deviations in the
cause of long-term planning, or they may at every
stage take the most direct route to the long-term ~
goal. The latter method is called the greedy
method. It has the failings that its name implies,
namely wastefulness, lack of discrimination and |
the inability to see profit in apparent loss. If all the
algorithms in a chess program, for example, were
greedy, then essential subtleties such as position
and sacrifice plays would be impossible; the
program would play fast and aggressive chess but
would be outranked easily by more pragmatic and |
carefully structured play.

GROSCH’S LAW
Developed by H R J Grosch in 1953, Grosch's
Law purports to give an indication of a computer
system’s profitability by using the formula:

Performance = (Price) X (A Constant)

During the 1950s this law was much quoted in the
mainframe world, where all concerned stood to
gain from encouraging the large centralised
installations that the law suggested were cost-
efficient — a system that costs three times as much
as another should perform nine times better if this
law is correct, although there was some debate as

~ to whether the quantity (Price) should be squared
or raised to a lesser power. The advent of
integrated circuitry, however, has almost
completely undermined the law.

HACKING
In computing, hacking is a ‘term applied te
amateurs who devote considerable time and effort —

trying to crack software protection, customising.
and breaking into other

USN the. , telephone ar

716 THE HOME COMPUTER ADVANCED COURSE

system. Hackers generally show a cavalier
disregard for the concept of privacy, and in some
cases are responsible for computer fraud
although it must be stressed that the majority of
hackers are concerned only with testing their own
limitations and those of the system they use.
Hackers first came to the attention of the general
public in the Walt Disney film War Games, in
which an inspired amateur almost starts World
War Three by breaking into the North American
defence network.

HALF DUPLEX
A radio link as used by taxis, citizens’ band and the
emergency services is a half duplex connection —
data can travel freely in both directions between
stations but this cannot happen simultaneously,
since one must be receiving while the other
transmits, hence the need to say ‘Over’, or “Come
On Good Buddy for a big ten-four on that one’ at
the end of every speech. (See full duplex on page
676.)

HAMMING CODES
The transmission of data along wires inevitably
introduces signal noise and errors, and computer
scientists have developed many error-checking
and error correction methods to counter data
corruption. Hamming codes, invented by R W
Hamming of Bell Telephone Laboratories in
1950, are a family of binary linear perfect error-
correcting block codes, ideal for correcting any
single error in the block.

Suppose we wish to send four bits of data in a
block — 0111, for example. To them we add a
three-bit Hamming code generated by the
transmitting computer so that certain
combinations of four bits from the seven will
always contain an even number of ones. Here the
code is 100, so the seven-bit block is 0111100 and
the combinations are:

The logical result of the three tests is 000,
indicating no errors. Now suppose that in
transmission bit four is “flipped”:

-Thelo gical result of the three tests is 011 , binary for
_ three, which indicates that bit four — ‘the third bit
from the left of the block — has flipped, and so can ~
be automatically corrected by the receiving
computer. The tests fail only if more than one bit
50h the seven is corrupted, and for such cases there
are fe EE soe: Chpadaurt: separ joes :

r : sim ic i naam

~ . . , F

LIZ DIXON.

FREE TRANSFER

As the tutorial section of our 6809
Assembly language course draws to a close,
we begin to take a more general look at the
techniques of machine code programming.
Our first topics are relocatable code,
instruction lengths and timing routines.

A program that iS written using relocatable, or
position-independent, code can be placed at any
position in memory and run without any changes
having to be made. This is particularly important
in multi-tasking or multi-user systems where
several programs may be loaded into memory at
the same time, and in order to ensure efficient use
is made of memory space, the operating system
must be able to load them at the most convenient
place. Even in simpler, single-user systems it is
usually important to be able to maintain
subroutine libraries and to construct a program
out of self-contained modules, in which case the
position of a routine in memory may vary.

Most processors deal with this by using what is
known as a linking loader. The assembler
produces relocatable code, which leaves out all
references to actual addresses in memory; it is the
job of the linking loader to insert the addresses as it
loads the program into memory. Since it is the
loader itself that handles the addresses, it is
straightforward to ensure that transfers of control

ROUTINES
DECLARATION

between different modules are handled correctly.
In this way, sections of code can be written in
different languages that all compile or assemble to
the same relocatable code; thus, for example,
PASCAL programs can call FORTRAN library routines.
This approach can also be used with the 6809, and
indeed it is necessary if modular construction is
used. ‘The 6809 makes the process a lot easier by
allowing fully relocatable code to be written
directly, so there is no need for the extra pes of
inserting addresses.

The key to writing relocatable code is to refer to
all addresses by means of an offset from the
program counter (PC). There are two ways in
which a program can use an address: as data and as
the destination for a transfer of control. Branch
instructions (BRA, BSR, etc.) calculate their
destinations as offsets from the PC and should be
used for all transfers of control within the user
program. The absolute transfer instructions (JMP
and JSR) should be used only for destinations that
will always be at the same place in memory, such as
operating system routines.

The more difficult task is to make all the
references to a data position independent, and the
6809 achieves this by allowing the PC to be used
for indexing. The instruction:

LDA OFFSET,PC

will add the (signed) offset to the current value of

Linking Loader
In large systems, machine code
programs are actually loaded
into memory by the Linking
Loader. This operating system —
utility takes the semi-assembled
machine code (containing no
absolute addresses) from the
assembler, and determines the
best ORG address for it from the
current state of the system. It
uses this address to replace the
symbolic addresses that the
assembler left in the program
with absolute addresses, and
then links to the program any
library routines requested by the
programmer; these routines are
loaded from the library disk and
attached to the program. Their
absolute call addresses can then
replace the symbolic addresses
in the program. Finally, the
Loader passes the complete
program to the operating system
for execution

THE HOME COMPUTER ADVANCED COURSE 717

the PC to obtain the effective address. The
problem with this addressing mode is how to
calculate the offset correctly: this requires
calculating the difference between the address of
the data and the current value of the PC,
remembering that the PC is incremented as soon
as an instruction is loaded into the processor.
When the instruction is being executed, therefore,
the PC points to the following instruction.

This method is complicated by the wide
variation in the lengths of 6809 instructions —
from one to five bytes long. For example:

LDX OFFSET,Y

takes up one byte for the op-code, and one byte for
the post-byte, which is used for any indexed
instruction to specify the index register being used,
and whether or not indirection is to be taken into
account. The offset can take up zero, one or two
bytes depending on its size. Zero offsets and
offsets that can be expressed in five bits can be
incorporated in the post-byte (though some
assemblers cannot handle the choice very
accurately). Larger offsets require an extra byte
(if they can be expressed in eight bits) or an extra
two bytes. Special zero or five-bit offsets are not
allowed when the PC is used for indexing. The
instruction: |

LDY OFFSET,X
would require yet another extra byte because the
op-code for LDY is two bytes long.

If you enjoy writing Assembly language
programs, and you are familiar with deciding what
data addresses to use and where to locate your
subroutines, then the associated tasks of looking
up (and sometimes working out) the op-codes,
converting addresses into two-byte format and
manually calculating jump offsets will soon
‘become second nature. A much simpler
alternative to doing this assembly by hand,
however, is to buy an assembler and let it do the
work for you, since it must calculate the length of
every instruction anyway. Most assemblers use the
special notation PCR (Program Counter Relative),
which makes the assembler use the PC as the index
register and calculate the offset. For example:

DATITM FCB 0

LDA DATITM,PCR

TERMINAL EMULATION
We give a subroutine that uses this technique to
allow emulation of a variety of terminals, so that a
program written to use a particular type of
terminal can be run on your system: The
differences between terminals are most apparent
in the codes that are used to control the various
screen functions, such as clearing the screen and
positioning the cursor. These may be control
codes (characters whose ASCII code is less than
32) or escape sequences, which consist of the
Escape character (ASCII 27) followed by any
other character or sequence of characters. Our

718 THE HOME COMPUTER ADVANCED COURSE

simple routine allows only for the substitution of
one control character by another, or a single
character following Escape by another single
character. But the routine clearly. shows how such
an emulation is carried out. Two tables are kept:
one contains control characters; the other the
Escape characters. If a program issues a control
character, for example, then this character is used
as an offset into the table to pick up the actual
character that should be displayed.

Being fully relocatable, the routine can be
added on to any other program in any position.
We assume the existence of an operating system
routine (OUTCH), which sends the character in the
A accumulator to the screen, and we use JMP to
access this routine — which should be at a fixed
position in memory. Note that the ORG directive
must still be given, although it has no effect. The
character to be displayed should be in A.

INSTRUCTION LENGTHS
The problem of calculating the length of
instructions is not confined to using ‘program
counter relative’ addressing. It is often necessary to
know the total length of a routine to be fitted into a
restricted memory space — for example, in a
ROM. Any book on 6809 Assembly language, or
the manual of an assembler, should include a table
of mnemonics along with associated data. For
each mnemonic, this data would include a
corresponding op-code, the total length of the
instruction (though this may not be possible, in
which case the minimum length will be given
followed by a ‘+’ sign), the number of clock cycles
that the instruction takes to perform, and the effect
of the instruction on the condition code flags.

The general rules for calculating the lengths of
instructions — and hence for writing compact
code — are:

1) Most op-codes are single byte; those directly
affecting the contents of S and Y (except for LEA)
and some affecting U (such as LDY and STS) are two
bytes long. }

2) Any indexed addressing will necessitate the use
of a post-byte, and possibly a further one or two
bytes depending on the size of the offset.

3) Data following the op-code for immediate
mode will be one or two bytes long, depending on

the size of the register used.

4) Addresses should be one byte long if in the
direct page (usually locations zero to $FF), and two
bytes otherwise. Not all assemblers make proper
use of direct addressing, so an address may turn
out to be two bytes when only one was expected.

The problem ot calculating the time taken by
each instruction is equally complicated, if for no
other reason than that the time depends on the
number of bytes that must be fetched, i.e. the

. length of the instruction. This is important in real-
time applications and for driving some
peripherals. The time for each instruction is given
as the number of clock cycles — or, at least, the

aac er nc A Ae SSA KT Ss i —— —

a

minimum number of clock cycles — that the
instruction takes; so the actual time taken will also
depend on the clock rate. A common clock rate
for 6809 systems is one MHz — one million cycles
per second. Thus, each clock cycle takes one
millionth of a second. The straightforward
instruction:

LDA DATITM

using a 16-bit address takes five cycles, and so
executes in five millionths of a second. The
instruction:

PSHS PC, B, CC

takes five cycles plus one cycle for each byte that is
pushed onto the stack; in this case a total of nine
cycles (remember that the PC is two bytes).

If a system does not include a real-time clock
then the only way to measure elapsed time is by
means of a software delay routine. This executes a
Sequence of instructions whose individual times
have been chosen so that the sum gives the
required interval. Such intervals are usually
measured in milliseconds (thousandths of a
second), so there is no need to be too exact — the
odd millionth of a second will not matter.
Assuming a clock rate of one MHz, the Software
Delay routine we give here will produce delays in
the range 1 to 255 milliseconds: the exact number
of milliseconds (ms) being passed as a parameter
in A. The notation (A) means the contents of

- accumulator A.

The calculation to find the constant COUNT can
be expressed as follows:

Instruction | Number; Number

Of Of
Clock Times

Executed Cycles

This gives a total of (A) * (7 +5 * COUNT) + 16 clock
cycles. To make the calculation easier, we will
ignore the 16. At a clock rate of one MHz, there
are 1000 clock cycles in a millisecond so the total
time should be (A) * 1000 clock cycles.

(A) * (7 +5 * COUNT) = (A) * 1000
(7 +5 * COUNT) = 1000

9 * COUNT = 973
COUNT = 195 (to the nearest integer)

It is quite feasible to make more accurate delays,
and to use the 16-bit registers for a greater range,
but the principle of decrementing a register a fixed
number of times remains the same.

Terminal Emulation Routine
ESCAPE

SPACE

OUTCH

_ CTABLE

ETABLE

EFLAG

DISPCH

DISP1

ESCCH

FINISH

EQU

EQU

EQU

ORG
RMB

RMB

FCB

PSHS

TST

BEQ

LEAX

LDA

CLR

BRA

CMPA -

_ BGE

CMPA

BEQ

LEAX

LDA

BRA

INC

PULS

JMP

END

ai

32

EFLAG, PCR

DISP1

ETABLE, PCR

A,X

EFLAG,PCR

FINISH

SPACE

FINISH

ESCAPE

ESCCH

CTABLE,PCR

A,X

FINISH

EFLAG,PCR

X

OUTCH

Software Delay Routine
COUNT

DELAY

LOOP1

LOOP2

A
ara re A

EQU

ORG

PSHS

LDB

DECB

BNE

DECA

BNE

PULS

15

$1000

B,CC

COUNT.

LOOP2

LOOP1

PC,B,CC

THE HOME COMPUTER ADVANCED COURSE 719

(Space is ASCII 32)

Enter operating system
address here

Table of control characters

Table of Escape characters

Flag to indicate whether last
character was an Escape

Save X

Check if last character was an
Escape

If not an Escape, then go to
DISP1

Else get address of ETABLE in X

Get replacement character using
the original character in A as the
offset

Reset EFLAG

Check if control character

If not control character, then —

goto FINISH

Else check if Escape

If itis Escape, then goto ESCCH

- Get address of CTABLE in X

Get replacement character using
the original character in A as
offset

Set EFLAG to indicate character

was Escape

Restore X

Display character in A

Note that the RTS at the end of

OUTCH will return control from

here to the calling program

Subroutine to delay (A)
. milliseconds

See: calculation

Save the other two registers
affected

Count for 1 ms

Keep decrementing

Until B reaches zero

Decrement A after each ms

Until A reaches zero

Return

4

~ COURTESY OF YOUR SPECTRUM

pressing the fire button

: Pee Rae OK As the popularity of arcade style ‘shoot-em-

ps’ has waned, so the distinction between
the various types of computer game has

become = blurred. _ Best-selling + home
= ----gomputer software now tends to combine
elements of arcade, strategy and adventure
games, and successful play requires much

more than just fast reflexes.

be en os Sa ® Psytron is a complex and absorbing game
featuring excellent fast-moving graphics, and will
take the player a long time to master. a
Sr eon he nd pa ted x teresa of the Psytron a

Droid’sView
_ These scenes from Psytron
show part of the action from.
level one of the game. As the
droid chases the saboteur —
through the corridors, the
view pans across the base. By .
‘means of the window i in the
bottom right- -hand cornerof —
_the picture, the player i isable —
to see through the eyes of the

droid. Whenthesaboteur
appears in the window, the ie
player can destroyitby

_ blow up the airlocks that connect the colony
‘ ae ae The second and third levels of play give
the player the chance to shoot down the alien
saucers — these may be picked off one by one or, if
the ‘Disruptor’ is utilised, all aliens in view can be

- wiped out at once. However, the Disruptor is
somewhat unstable, and there is a 10 per cent
chance of it exploding when used.

‘this stage is to survive for an hour, keeping the base

‘Once level four has been reached, the player has
the chance to make strategic decisions, based on
the amount of damage suffered by the colony’s
installations. Throughout this level, the alien craft
continue their attack, bombing strategically vital
areas of the base and dropping saboteurs on
kamikaze missions. However, at this level,
‘Freezetime’ is introduced. By simply pressing the
Return key, the player may ‘freeze’ the action so
that damage reports may be recei
i aie Factors to be. consideé:

intact by using all the facilities that have been
introduced in previous levels. The number of
attacking ships increases, the action speeds up,
and it soon becomes apparent that it is impossible
to keep all the colony’s installations intact in the
face of the overwhelming firepower of the
attacking aliens. Decisions must be made as to
which buildings must be sacrificed — it is vital to
protect the docking bay, in particular, as this will
allow stocks to be replenished.

Computer games have come a long way since
the days of Space Invaders, and Psytron provides a
demanding and absorbing alternative to the
arcade games that have until recently dominated
the market. :

THE HOME COMPUTER ADVANCED COURSE

| Abacus 502, 713
| Absolute cell address 712, 713

_| Acorn Electron 690
| ACT Apricot

Manager527
Addressing modes 558-559
Alarm clock program 675
ALGOL 649
Amstrad CPC-464 690

disk pack 570 ©
-Lisa569, 673
Macintosh 502, 513,627
mouse 570
IIc 568-571
11569

ee 570
| | Archive 503

Asimov, Isaac 603 ~

_ _Asimov’s Laws of Robotics 603

| Atari LOGO 706-708
| Atari 600/800XL 691

7 Audio ae Processor —

| BASIC
efficiency 596-597
program storage 704-705

| BBC Micro 502, 690
graphics 653

_ Minefield game 492-494
___ user-defined character
generator 588-589
utilities 664-665, 704-705 -

___ variable search program
664-665, 700

variable replace program ©
_ 704
BCD (Binary Coded Decimal) 577

| Blumstein, Herb 500
| Bubble memory 503
| Buffer box 523-525, 546-548

Calculations 484
Cartesian geometry 621, 661.

_ INDEX TO ISSUES: 25 TO 36

Casio 560
FA-20 Interface542
FX-720541-542
FX-750P 541-542
PB-700541-542

Cheetah RAT 590-591
Chowning, John 482
Classic Racing 600
Command systems 556-557
Commodore Plus 4 691, 709-711
Commodore 16 691
Commodore 64 691, 709

graphics 496-499,653
LOGO 666-668, 694-696
user-defined character
generator 572-573, 616-617
variable search program 700

Comparisons 484
Compilers 596

| Computer crime 486-487
| Continuous path movement 701-

703
CP/M 512
Cylindrical co-ordinates 661-662

End-of-file indicator 528
End-of-game procedure 493

_Epson PX-8 609-611 |
Ergonomics 21-522, 528
Error handling 484-485
Exclusive-OR 528

_ Expert systems 528
| Exponent 549

F
Facsimile transmission 549 |

Factorial 549
Fail-safe 549
Fairlight CMI 581-583
Fan-in 549 ©
Fan-out 549
Father file 688

| Feedback 549
Feedback control 585-587
Fibonacci sequence 576
Fibre optics 576
Field 576
FIFO 576

| File576

D
Decoder logic 685
Digital-to-analogue converter 714
Dragon-32 519
Dragon Slayer game 694-696

| Drop-in 488
Drop-out 488
Dump 488
Duplex 488
Dynamic RAM 488
Dynaturtle 655

E
| Easel 503
EAPROM 508
Edge connector 508
Editor 508
Electronic mail 508
Electrosensitive printers 508
Electrostatic printers 528
Emu Drumulator 528
End effector 662-663 ©

| ENIAC 528

File maintenance 576

_ File protection 592
File server 592
File transfer 592

Filtering 608
Financial modelling 692-693
Flag 608
Flip-flop 608
Floating point notation 608
Floppy disk 628
Flowchart 628
Flow control 628
Force sensors 683.

Format 628
FORTH 522, 649

FORTRAN 649
| Fourth generation 649

Four Bugs program 668
Frequency distribution 676
Full duplex 676

| Fuzzy theory 676

G
_ Gates 688
Globality 688

Global variables 594
Grandfathering 688

_ Gray code 688
Gray disc 688
Greedy Method 716
Grosch’s Law 716

H
‘Hacking 486-487, 716

| Half duplex 676, 716
Hamming code 716
Hangman game 504-505 |
Harrap, Peter 550
Help facilities 526-527
Hiller, Lejaren482 0 sis
Hexadecimal display 685-687

IBM PC Junior 591 -
Indexed addressing $98- 399, 618-.

620
Index registers 598- 599 .
Indirect addressing 637-639
Infrared emitting diodes 590
Infrared joypad 590-591

_ Integrated software 502, 626-627,
644-645, 672- 673

Interface box 574-575
Interrupt handling 669, 697- 699

Jellinghaus MIDI package 553-554
Joystick control634-635 es

K
Kashio, Tadao 560
Koala-pad 629-631 _
Kurzweil 583

Lo
Large Scale Integration asp 649
Laser sensors 683

et
| Toms of Midnight a

|THE HOME COMPUTER ADVANCED COURSE
INDEX To ISSUES 25 To 36) c

: Library routines 566-567
_| Light sensors 641-643, 681

| Linking loader 717- 7119
. | LOGO 506-507, 532-533, 543-

+545, 564- 565, 593-595,
— 604-605, 623-625, 654-

706-708

| 4-2-3626- 627, 644- 645
Symphony 644-645

i Lichord 1643

7 Machine code 496-499, 518-519,
537-539, 558- 559, 577-
(579, 598- 599, 618-620,
637-639, 657-659, 697-

| ~~ 699, 717-719 :
| Mains relay box 646-648

__ applications 674-675
/ Man-machine interface 512-513

| Melbourne House 540 _
-Memotech 580 |

| Menus 556-557
_| Micon (see MID) _

Micronet-800 513 _ _Micropro Wordstar 526

_| MIDI481-483, 534-536, 553-
| + 555,561-563
| Milgrom, Alfred 540
| Minefield game 492-494

Missile Command 660
Mitchell, Philip 540
Moore, Charles 649

| Morse code program 648
MSX 669-671, 689-691 |
Multimate 627

| Multiplan 627
| Multiplexing 685-687

Multisound 555
Music 481-483, 509-511, 534-

—s«36, 553-555, 561-563,
581-584

| Music Composition Language 535,
561, 582

_ MUSICOMP 482

oo NEC PC8201A 650- G52

Necromancer Si7

656, 666-668, 694- 696,

| Nested interrupts 698
Nodes 565

Olivetti M10 651.

Opes sensors 682

| Pacman 640
| Papert, Seymour 506- 507
PASCAL 649
-PDSG 554-555
Piaget, Jean 507

| Pocket computers 541-542
| Point-to-point movement 701-703
_ Postfix notation 649

| Potter, David 520
_ Prism Topo 602
Procedures 543-545, 593-595
Proximity sensors 683, 103 —
Psion 520
Psytron 720

| Pythagoras 481

— Quantec 584 —
Quester 641
Quill 503

lp

Real-time clock program 699
Recursion 604-605,623-625

Registers 518-519, 537-539
Relative cell address 712-713

| Relay control 374-375
Relocatable code 717-719
Reverse Polish notation 649
Revolute co-ordinates 662, 703 —
Rhodes, Simon 500
Robots 602

arms and hands 661- 663,

701-703
_ movernent 621-622, 641-
643
sensors 681-684

| Robotics 601-603, 621-622, 641-
643, 661- 663, 681- 684,
701-703

Roland

: s

On Your Bike game 632-633, 653 _—

| Snowflake curve 624

GR700562
MP401 MIDI510
MSQ700581

Sampling 581- 583
Schaeffer, Pierre 482
Schedule 652 |
Sega SC3000H 529-531

| Sequencing 509-511, 534-536
| Sequential Circuits

Six- Trak 554-555
Model 64554-555

| Seven-segment display 685-687 :
‘Shaft encoder 642 |

_ Sheep herding game 708
Sierpinski’s Curve 625 _
Simplex 676 —
Sinclair OL 501- 503, 689-690,701

_ Sinclair Spectrum 689- 690
graphics 616, 632-633
user-defined character
generator 588-589
utilities 664-665
variable search eege
664-665

Software delay routine 719
Software interrupts 698-699 —
Softsel 500 _
Son file 688
Sony Hit-Bit 669-671
Space Invaders 615
Space Turtle program 656
Spherical co-ordinates 662
Spreadsheets 692-693, 712-713
Stacks 657-659
Star Raiders 680

| State transparency 565
_ Stepper motor 621-622
Synclavier 531
SynthAxe 562

_ Synthesisers 510-511 _

&

| Tandy
Color 519
Model- 100 650-652

| ‘Tangram puzzle 564-565, 595 —
| Tape reading program 674
| Tatung Einstein 489-491
Terminal emulation routine 719

Testing routines 67
| Timing routines 717-719
__| Toshiba HX-10 669-671

_ | Touch sensors 681-683 —
Turtle 532

geometry 543-545
Two-joint geometry 702.
Two-motor control 612- 614 |.

Ulesyath 555
_ Ultrasonic sensors 683
User port 514-516
Utilities664-665

Vv
Variables 484
Variable search program 664- 665,

700,704-705
Very Large Scale Integration

(VLSI) 649
-Vu-Cale 692-693, 712-713
we

Wanted: Monty Mole 552
es 565

x
Xchange 520, 644- 645 _
XRI Systems’ Micon 553 —

Y
| Yamaha |

DX7561
-KX5581

6809 microprocessor 518-519, |
 §37-539, 558-559, 577-

579, 598- 599, 618- 620,
637-639, 657-659,677- |

679, 697-699, 717-719
6820 PIA 677-679
7850ACIA677-679 ts
7501 microprocessor709

